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Abstract Parameters of total  body  cholesterol  metabolism  in 
humans  can  be  determined by using a three-pool  model  to 
analyze  the  turnover of  plasma  cholesterol  following  the  injec- 
tion of radiolabeled  cholesterol.  In  the  past  this  required a 
rigorous  schedule of approximately 36  blood  samples  over a 
10-month  period. We  have  developed a convenient  sampling 
schedule  involving  only  six  large  samples,  each  analyzed in 
sextuplicate.  Such a reduction  in  the  frequency of  samples  is 
possible  only  when  considerable  confidence in the  model  is  avail- 
able.  In  general,  the  simplified  sampling  strategy  depends  upon 
considerable  prior  experience  with  the  model,  only  moderate 
biological error,  and  estimatable  subject  to  subject  variation  in 
model  parameters.  Because  the  timing of the  samples  is  critical 
and because  the  optimal  times  will  differ  for  different  subjects, 
the  six-point  strategy involves  using the first  three  samples 
(drawn  at  days  1,  7,  and 24 or, for  hypercholesterolemic  subjects, 
at days  1, 8,  and 28) in conjunction  with  results  from  previous 
studies  to  set  the  time  for  the  next  sample;  the  process  is re- 
iterated for  the  last  two  points. In this  study, we  have compared 
parameter  estimates  obtained by the new six-point  schedule  with 
those  obtained  simultaneously  (in  the  same,  single  turnover 
study) by the old 36-point  schedule  in  the  same 26  subjects.  Both 
schedules  gave  comparable  values. In  particular,  the  coefficients 
of variation  between  values  obtained by the  two  methods  for 
each  of the  four  parameters  for  which we  have  developed predic- 
tive equations were quite low: PR  1.5%, MI 4.1%, Msmin  13%, 
M,,min 4.3%. The simplified  six-point  schedule  makes  it  feasi- 
ble  to  study  long-term  cholesterol  turnover  in  substantial  num- 
bers  of patients. -Dell, R. B., R. Ramakrishnan, R. H. 
Palmer, and D. S. Goodman. A convenient  six-point  blood 
sampling  schedule  for  determining whole  body  cholesterol 
kinetics  in  humans. J. Lipid Res. 1985. 26: 575-582. 
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Whole  body cholesterol metabolism in  humans  can be 
studied by analyzing  the  turnover of plasma cholesterol 
following injection of radiolabeled cholesterol complexed 
with lipoproteins (1). In previous  studies we found  that a 
three-pool  compartmental model fitted the  long-term 
plasma cholesterol specific activity-time curve in 56 sub- 
jects who were either  normal or  had a wide variety of 

abnormal  serum  lipid values (2, 3), and  that a four-pool 
model did not improve the fit. Given such extensive ex- 
perience with the three-pool model, we are confident that 
the model is a valid description of whole body cholesterol 
turnover  in humans in vivo. The three-term  exponential 
equation used to fit the  data provides unique values for six 
of the eight parameters of the  three-pool model, and 
upper  and lower limits  can  be placed on  the  remaining 
two parameters (1, 2). Thus, from a long-term cholesterol 
turnover study, one  can  obtain estimates of the'production 
rate,  the  mass of rapidly turning over cholesterol (pool l), 
and of the  mass and turnover  rates of cholesterol in  the 
more slowly turning over compartments, pools 2 and 3. 

The blood sampling schedule used in  our previous 56 
studies (which involved drawing 35-40 samples over the 
course of 10 months) is taxing for both  patient and 
physician, and decreases both  the number of subjects who 
can  be  studied  as well as  the  number of subjects who 
volunteer for the study. It would be highly advantageous 
to have a simpler and  more convenient blood sampling 
schedule for obtaining  this  information. 

In principle, the six unique coefficients of the  three- 
term  exponential  equation  that describes the  turnover 
data can  be  determined from any six points  on  the specific 
activity-time curve. However, the  accuracy of the final 
parameter  estimates  depends  upon  both  the  accuracy of 
the six points and when they are  drawn  (Ramakrishnan, 
R. Optimal design of experiments in nonlinear  estima- 
tion.  Submitted for publication). Therefore,  the six points 
should be replicated so that they are accurately  deter- 
mined, and should be  drawn  at  optimal times to  permit 
the most accurate  estimation of the six parameters of the 
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equations. In the case of a straight line y = a + bt,  the 
accuracy of the estimates of the two parameters is highest 
when the two  t's are determined as far apart as is feasible 
(4). The situation is more complex  when dealing with 
nonlinear models (5), as discussed further  under Methods. 
It should be noted that  determining only  six points pre- 
cludes testing for alternate models. Thus, use of a sim- 
plified six-point sampling schedule depends upon prior 
experience with the model, only moderate deviations from 
the model (biological error, see Discussion) and estimat- 
able subject-to-subject variation in model parameters. 

The purpose of the present study was to evaluate a 
convenient blood sampling schedule for the study of 
whole body cholesterol turnover in  humans. The con- 
venient approach adopted involves drawing only  six  blood 
samples (large enough for  six replicate specific activity 
analyses to be carried out  on each sample) at times specifi- 
cally  selected to be optimal or  near optimal. In the present 
work, a single turnover study was performed on each 
subject, with blood being drawn  during this single study 
according to both the usual sampling schedule and the 
convenient six-point schedule simultaneously. In each 
study, parameter estimates obtained by this method were 
compared with parameter estimates obtained simultane- 
ously by drawing 36 separate samples in the conven- 
tional manner (2). The results show that parameters 
estimated from the specific activity-time curves deter- 
mined by the two methods agree quite closely. 

METHODS 

Patient  population 
Twenty-six subjects were studied. Five of the subjects 

were normal, 3 were hypercholesterolemic, 15 were hyper- 
triglyceridemic, and 3 had a combined disturbance. Re- 
sults of the turnover studies in 19  of the subjects (numbers 
27-30,  34-36,  40-42,  44-49, and 52-54)  have been re- 
ported previously (2), and the  numbers used to designate 
these subjects correspond to the  numbers in that study. 
Seven subjects (numbers 64-70)  will be reported in another 
publication (Blum, C. B., R. B. Dell, R. H. Palmer, et al. 
Relationship of the parameters of body cholesterol metab- 
olism  with plasma levels of HDL cholesterol and the 
major HDL apoproteins. Submitted for publication). 

Turnover  study 
Details of the labeling technique have been published 

elsewhere (1, 6). Briefly, each subject was injected intra- 
venously  with approximately 25 pCi of [4-'*C]cholesterol 
complexed to the subject's  own lipoproteins. Samples of 
blood  were then  drawn from each subject according to 
each of the sampling schedules described below and 
analyzed for the specific radioactivity of serum total 
cholesterol by methods described previously (1, 2, 6). 

The  model 
The three-pool model used to characterize whole body 

cholesterol turnover is  shown in Fig. 1. The model has 
eight unknown parameters, which are: production rate 
(PR), which is the total input  (or  output) of cholesterol 
into  the body from both synthesis and absorption; mass 
of pool 1 (M1), which  is the mass of most rapidly turning 
over cholesterol in the body; four exchange rates, kI2, kZ1, 
k13, k31; and synthetic input  into  the side pools,  pools 2 
and 3. All other  parameters of the model are calculable 
from these basic eight (1, 6). The two parameters relating 
to side-pool synthesis (Rzo  and R30) cannot be estimated 
directly from the plasma cholesterol  specific activity-time 
curve. However, limits can be  put  on  the possible  values 
for RZ0  and  RgO (1, 6). We usually allow  0.2  g/day  for non- 
synthetic cholesterol input; hence, Rz0 and R30 are con- 
strained to be between 0 and PR-0.2. This allows calcula- 
tion of a range of values  for MO, M3, and total body 
exchangeable cholesterol (Mtot) (1, 2);  when peripheral 
synthesis is assumed to be  zero, then minimal estimates 
for pool  sizes are obtained, and when R30  is assumed to 
be PR-0.2, maximal estimates for M3 and for Mtot are 
obtained. 

Rationale for an optimal  sampling  schedule 
Since the plasma cholesterol specific activity-time curve 

can be described by a sum of three exponentials contain- 
ing six parameters, it is possible to estimate these six 
parameters with  observations at six time  points. A schedule 
for sampling at only six times during the study would  be 
convenient for both subject and physician, requiring only 
one-sixth the number of clinic  visits that the usual  schedule 
requires. The question then arises as to how these  six time 
points should be chosen. 

The answer to this question involves considering the 
effect of sampling times on the accuracy with  which the 
unknown parameters of the equation  can be estimated. 
We  will first  discuss the sources of imprecision in the 
parameter estimates and  then how the  timing of the 
samples affects the precision of the parameter estimates. 

l3 20 
I 
I 

l3 IO 

I 
30 

I 
I 

J. PR 

Fig. 1. Three-pool model of cholesterol  turnover in humans (see 
text for definition and discussion of symbols). 
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If the observations can  be  made with no  error whatso- 
ever, the  parameters  can be determined exactly,  with no 
uncertainty, from observations at any six distinct times. In 
fact, of course, experimentally derived data deviate from 
the  true specific activity curve that is characteristic of a 
given subject. There  are two reasons why a point can 
deviate from the  true curve: u) measurement  error associ- 
ated with the experimental determination of the specific 
activity of the sample, and b)  a  transient fluctuation in 
cholesterol metabolism in the  patient yielding a change in 
plasma specific  activity. This  latter reason can be called 
biological error, and is discussed further below. Measure- 
ment  error  can  be reduced by performing replicate assays 
on  a given sample, but  cannot be eliminated. Therefore, 
parameters calculated from the observations have  some 
uncertainty associated with them, usually expressed as 
confidence limits on  the  parameter estimates or as stan- 
dard deviations of the  parameter estimates. 

Expression for precision of multiple parameters 

When  the model has more than one parameter, there 
are many ways (ref. 7, pp 51-53) to combine the precision 
of the estimates of the several model parameters  into  a 
single quantity. In this study, we used the sum of squared 
coefficients of variation (defining the coefficient of varia- 
tion as  the  standard deviation of a  parameter estimate 
divided by the  parameter estimate itself) of the  parameter 
estimates. We made this choice for two reasons: first, it 
removes the dimensionality of each parameter; secondly, 
minimizing this quantity tends to make the coefficients of 
variation of the individual parameters as close to one 
another as possible. Thus, this approach gives similar 
weight to each of the model parameters (i.e., parameters 
with small and large values will be equally important in 
determining  the final sampling schedule). 

A finite imprecision in  determining  the data points 
leads to imprecision in parameter estimates, and  the 
extent of this imprecision depends  on  the sensitivities’ of 
the values predicted from the model at the times of obser- 
vations to the model parameters. If the values predicted 
from the model change considerably with small changes 
in the  parameters (i.e., are very  sensitive to changes in the 
parameters), then  the unknown parameters can be es- 
timated  quite precisely from the values determined ex- 
perimentally and the parameter estimates will  have narrow 
confidence limits. Thus,  the accuracy of parameter es- 
timates  depends not only upon  the accuracy of the obser- 
vations but also on how sensitive the values computed 
from the model are to small changes in the parameters. 
Furthermore,  the sensitivities of the values  to the  param- 
eters depends  on  sampling times. This dependence can be 
illustrated by discussing the simple case of a linear model 
and the more complicated situation of nonlinear models. 

Linear model 

In fitting a straight line y = a + bt to a set of data, 
observations at two points, tl  and  tZ, suffice to estimate 
values for the unknown parameters  a  and b. The standard 
error of these estimates is  inversely proportional to the 
squared difference  between ti and t2 (4): 

SE (a,b) 
1 

(tl - td2. 

The variance of the  parameter estimates diminishes as  the 
two time points are chosen  to be further and further 
apart.  In other words, drawing two samples as  far  apart 
as possible  allows the most precise parameter estimation. 
The only limitations to this are the feasibility of experi- 
mentally determining y and  the fact that  the phenomenon 
under study must be linear over the whole range of  t. 
Therefore, one must have techniques for measuring, pre- 
cisely,  low  levels  of y and must be assured that  a linear 
model is appropriate because testing of linearity is impos- 
sible  with two data points. 

Nonlinear models 

The situation becomes more complicated with non- 
linear models (such as sums of exponentials) because the 
optimal sampling times now become dependent on  the 
unknown parameters. A simple monoexponential equa- 
tion with one unknown parameter will illustrate this 
point. For 

y = e-at 

an observation at  a single time is sufficient to estimate a. 
However, if the observation is made  at time zero, y equals 
1 regardless of the values of a. Thus at time zero the 
model-predicted value (y) is totally insensitive to the 
unknown parameter (a). At large times, y approaches 
zero and the value  is again highly insensitive to a. Hence, 
making observations at  either time zero or at infinite time 
provides no information about a, and such observations 
cannot be used to estimate a. At intermediate times, the 
sensitivity varies with time. Therefore, observation times 
should be chosen that maximize the sensitivity and hence 
the accuracy of the  parameter estimates. 

As discussed above, the accuracy of each of the  param- 
eter estimates depends upon both the accuracy of the 
observations and  the sensitivity of the value predicted 
from the model to the parameter. In  the monoexponential 
equation, the standard  error of a can be stated as: 

where sy is the  error in measuring y. Just  as in the linear 
case, the  standard  error of the  parameter estimate de- 
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pends  upon  the  sample  time, t. However, in  contrast  to Examples are given (Ramakrishnan, op. cit.) for optimal 
the  linear case, the  standard  error of the  parameter es- schedules when the  number of samples is greater than the 
timate also depends  upon  the value of the  unknown number of model parameters. 
parameter, a. In fact, if sy is constant,  then SE, is at  a 
minimum when t = l/a Thus, the most precise estimate Sequential  design 
Of (minimum is Obtained when = 'la' If 'Y is While  the  prior  distributions of parameters  can be used 
not 'Onstant but depends On Y in Some fashion (we typi- to choose sampling  times  that are optimal  for  the pop la -  
callY find that it is a constant percentage Of Y  Y is tion as a whole, there is considerable variability in the 
very small), the precise result is different but the principle parameters, and hence in the optimal sampling times, 
remains  the  same, which is that  there is a single optimum  within  the  population^ This variability is illustrated for 
sampling time, which is a function of a. nonhypercholesterolemic subjects in  Table 1. 

Choosing 
estimates 

optimal  sampling  times 
based on prior  studies 

from  parameter 

The dependence of the best sampling times on the 
values of the  unknown  parameters poses a dilemma 
inasmuch  as  the  purpose of the  study is to estimate  the 
unknown  parameters. This problem  has been considered 
in  the statistical literature (5, 7) and the  recommendation 
is to calculate the  optimal times using  the  mean  param- 
eter values from previous studies, assuming  that these 
means will  be  close to  the  parameter  estimates  that would 
result from the  study  being  planned. 

That approach  assumes  that  there is a single universal 
true value for each parameter, which is approached by the 
mean values from previous studies, and  that  each  study 
brings  the  parameter  estimate closer to this single value. 
However, in biological studies, each subject has a different 
true value of the  parameter; past studies, however  many, 
cannot precisely predict the  true value for a subject not 
yet studied. This problem  has been analyzed by us 
(Ramakrishnan, op. cit.) and  an approach  has  been 
worked out  that  determines  the best sampling times for a 
range of possible parameter values rather  than for a single 
value. 

This approach  requires  a knowledge of the  distribution 
of parameter values in  the  population. We estimated  this 
distribution from our past experience by treating  the 
parameter values from all previous turnover studies as 
equally likely to occur. Since hypercholesterolemic sub- 
jects were found  to have different parameters and hence 
different optimal  sampling times, two separate  distribu- 
tions were used - one for hypercholesterolemic subjects 
and  one for others. 

It may be noted  here  that  the  sampling times obtained 
in  this manner give the  optimal  times if one  plans  to draw 
only six blood samples. Optimal schedules for drawing 
more samples will be different from and probably  better 
than  a six-point schedule, especially when  the  true  param- 
eter values have a  broad  distribution. Thus, it would  be 
better  in  a statistical sense to  draw 12 or 18 samples clus- 
tered  in some fashion around the six times, but  in this 
study we were willing to sacrifice some precision for the 
convenience of a six- or nine-point  sampling schedule. 

.. 

In  order  to refine the choice of sampling  dates (which 
otherwise would be based solely on the  prior  distribution 
of parameter values) to be better  suited for a given indi- 
vidual, we adopted  a  sequential design approach  that 
incorporates  early  information from a given study  in  the 
calculations of successive sampling times. The approach 
is described in  detail elsewhere (8), and outlined in Fig. 2. 

Samples were obtained at days 1, 7 ,  and 24 (or days 1, 
8, and 28 for hypercholesterolemic subjects) and analyzed 
rapidly. The  data were then used in  conjunction with data 
from previous studies in  order  to  obtain  the most  likely 
first approximation of the six parameters. This was done 
by noting  that  the previous studies  had provided a family 
of specific activity decay curves with a distribution of 
parameter values, some of which would  be more likely 
than others, given the first three  data points. We chose the 
most likely parameter  estimates  that would  still  fit the first 
three data points exactly. Using these preliminary es- 
timates,  the most likely best time for the  fourth  sample 
was chosen. After each successive sample, the process was 
repeated  to choose the next sampling time. After all six 
samples had been obtained,  the final parameter estimates 
were made  without reference to the  prior  distribution. 

The sequential design was implemented  after  the first 
three samples had been obtained. The first sample was 
drawn on day 1, the earliest feasible time consistent with 
complete mixing of the label with the mass of readily 
exchangeable cholesterol. The second and  third sampling 
times were chosen to  correspond with the most likely best 
times based on  the  prior distributions for nonhypercholes- 

TABLE 1. Subject-to-subject variation  in  optimal sampling times" 

Samole No. Minimum 10th Percentile 90th Percentile Maximum 

2 4 5 9 10 
3 12 16 31 34 
4 35 40 87 102 
5 87 110  197 214 
6 253 267 300  330 

~~~~ 

"This table  illustrates the distribution of  optimal sampling times (in 
days  after  the  administration  of  ["C]cholesterol)  for  samples 2-6 of  a six- 
sample schedule. The optimal sampling times were determined from 
cholesterol  turnover  curves  from  38  subjects  without  hypercholesterolemia 
(2); times for  hypercholesterolemic  subjects  were  slightly longer. 
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Fig. 2. Sequential design approach for determining a six-point 
sampling schedule. 

terolemic subjects (days 7 and 24) and hypercholesterol- 
emic subjects (days 8 and 28) separately, as these distribu- 
tions had slightly different mean values. Theoretically, the 
sequential design could be implemented earlier (e.g., after 
the second sample), but  the ranges of optimal times for 
the  third sample were reasonably narrow, and completing 
the analyses in time to refine the  optimal  third time would 
present logistical difficulties. Therefore, we chose to im- 
plement the procedure after the  third sample. 

Computer  programs 

Optimal  sampling times, for an individual or for a 
population, are  determined by minimizing a nonlinear 
function of several variables, requiring  the use of a com- 
puter program. Details of the algorithm used by the pro- 
gram  are given elsewhere (Ramakrishnan, op. cit.). 

Sampling  schedules 

Two sampling schedules were  used simultaneously in 
each subject. In one, the usual sampling schedule, 36 
samples were drawn over 40 weeks. They were drawn 1, 
2, 3, 4, 7, 10, and 12 days after injection of tracer, twice 
a week for 6 weeks,  weekly for 4 weeks,  every 10 days  for 
6 weeks, every 2 weeks for 10 weeks, and  then every 3 
weeks for the  remaining 12 weeks  of the study. In the 
second schedule, samples were drawn at only six time 
points, at times which coincided with 6 of the 36 times in 

the usual schedule. The six time points were  chosen as 
described above (Fig. 2). In order to increase the accuracy 
with which each point was determined, six analyses were 
performed on each sample, and results falling outside 
statistical limits were excluded (9). 

Residual error 

The residual error  about  the fitted curve provides an 
indication of the extent to which an observation may 
deviate from the model-predicted value. 

Residual error 
(coefficient of d7 (Yi obs -Yi cdc)'/Yi talc 

variation) = 1=1 36 - 6 

where Yi ,,bs is the observed plasma cholesterol  specific 
activity at  the i-th time, Y; cdc is the specific activity 
calculated from the model at the i-th time, and division 
by Y; cdc is done because measurement error was found 
to be a constant percent of the value. As discussed  above, 
both measurement error  and biological error cause devia- 
tions that  contribute to the residual error  in  the 36-point 
strategy. In  contrast,  in  the 6-point strategy,  biological 
error does not contribute to the residual error.  This is 
because the mean values of the replicates at the six time 
points define one and only one six-parameter curve, with 
no residual error by definition. (Of course, biological 
variation can  alter  the value of any given point, and hence 
the value of the parameters, but  there is  still no residual 
error in the curve defined by six points.) Thus,  the only 
contribution to the calculated residual error  in the 6-point 
strategy is the measurement error arising from variability 
in  measuring the replicate samples. 

Since measurement error is the same with either sam- 
pling schedule, the difference  between the residual errors 
with the two methods should reflect  biological variation. 
We have  chosen  to  call this difference  biological error, and 
computed it as: 

BE = dRE362 - RE6' 

where BE  is biological error  and  REs6  and RE6 are the 
residual errors found with the 36- and 6-point strategies, 
respectively. 

RESULTS 

Parameter  estimates 

Model parameters estimated from the 36 points drawn 
by the usual sampling schedule and from the 6 points of 
the new schedule are given in Table 2 and Table 3. Table 
2 gives values for each patient as well as means for PR, 
MI, M3min and  Mtotmin,  parameters for which we have 

Dell et al. Convenient  schedule for whole  body  cholesterol kinetics 579 

 by guest, on June 19, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


TABLE 2. Model parameters for each subject estimated from both the usual 36-time point sampling schedule 
and  the new 6-time point schedule 

Subject PR MI Mlmin Mtotmin kzl krl 

# 36 6 36 6 36 6 36 6 36 6 36 6 

27 0.87 0.87 18.9 18.9 17.2 21.2 58.3 57.7 
28 0.92 0.92 23.6 23.7 20.2 18.1 60.5 60.5 
29 0.96 0.96 20.7 20.7 27.6 26.9 66.0 66.2 
30 1.36 1.36 22.6 21.8 45.3 52.0 84.5 86.9 
34 1.50 1.51 31.1 32.0 32.8 30.4 92.3 97.0 
35 1.53 1.56 30.2 30.8 53.8 56.3 98.9 105.0 
36 1.28 1.30 23.9 23.0 35.4 38.0 80.6 79.6 
40 1.09 1.07 22.5 21.8 41.6 43.5 74.5 71.3 
41 1.76 1.76 34.3 34.6 69.1 69.6 111.4 114.8 
42 1.82 1.82 25.7 24.6 46.5 49.2 85.4 85.6 
44 1.04 1.04 25.1 23.7 39.8 42.4 91.6 86.0 
45 2.42 2.30 27.0 27.7 53.6 51.6 94.9 96.4 
46 1.57 1.55 22.3 21.1 44.3 44.9 82.6 81.2 
47 1.87 1.89 28.4 27.1 58.2 67.4 113.3 112.5 
48 2.15 2.12 27.4 26.0 47.0 47.0 94.7 94.7 
49 1.49 1.44 21.8 20.2 27.1 44.6 79.8 71.9 
52 1.29 1.30 25.3 25.5 47.6 50.6 83.2 89.4 
53 1.95 1.93 26.9 24.5 48.2 44.0 93.2 88.6 
54 1.30 1.28 20.2 20.4 25.2 22.3 69.1 60.7 
64 2.09 2.10 31.6 29.8 44.0 41.5 95.9 98.8 
65 1.13 1.13 21.3 21.2 81.1 86.4 119.6 123.2 
66 0.82 0.82 17.0 16.8 38.8 38.5 66.6 66.2 
67 1.15 1.15 30.4 29.7 23.8 27.2 87.5 84.4 
68 1.29 1.24 28.8 30.5 35.6 45.9 79.8 77.9 
69 0.66 0.66 19.9 20.3 35.8 39.2 65.7 66.5 
70 0.90 0.91 25.0 25.0 27.8 36.6 65.0 65.1 

Mean 1.385 1.385 25.08 24.71 41.02 43.67 84.42 84.15 

Coef. var (%) 1.5 4.1 13 4.3 
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,018 ,025 
.045 ,055 
.050 ,047 
,038 ,044 
.015 ,022 
.040 .031 
,027 ,030 
.025 .036 
.024 ,027 
.010 ,045 
.038 .032 
.026 .024 
,008 ,014 
,029 ,024 
,049 ,053 
.044 .043 
,009 ,012 
,026 ,044 
,032 ,037 
,020 ,033 
.0271 ,0315 

36 

developed predictive equations (2), and for kzl  and k31. 

From these six parameters all other model parameters can 
be derived (equations  are given in (1)). Table 3 gives only 
mean  parameter values for klz and k13 and various mass 
estimates obtained from the two sampling schedules. It 
will  be noted that  there is very  good agreement between 
the  parameters derived from the two sampling strategies, 
suggesting that  the convenient 6-point schedule does not 
introduce any substantial bias in the  parameter estimates. 
Also presented in the tables are  the coefficients of varia- 
tion of each of the parameters estimated with the 6-point 
schedule compared to values obtained via the 36-point 
schedule. This coefficient of variation provides an estimate 
of  how much the values determined from the 6-point 
schedule varied from the values obtained by the usual 
36-point schedule and was computed by: 

Mean P36 
when Pb and Pi6 are parameters of the i-th subject es- 
timated from the 6- and 36-point sampling schedules, re- 
spectively. The smaller the coefficient of variation, the 
closer the  parameters estimated from the two schedules 
agree with each other. 

The coefficients of variation for PR, M1, and Mtotmin 

were  less than 5% and for Msmin the coefficient  was  13%. 
These four parameters are parameters for which we have 
developed predictive equations (based on physiological 
variables such as total body weight,  excess body weight, 
age, and plasma cholesterol and triglyceride concentra- 
tion (2)), and they are  determined  quite accurately by the 
new sampling schedule. 

Residual error 

The residual error for the 36-point strategy (REJ6) 
varied from 2.23 to 8.61%, with a mean of 4.45%. The 
residual error for the 6-point strategy (RE6) varied from 
1.41 to 6.53%, with a mean of  2.91%. In 23  of the 26 sub- 
jects, the residual error was larger for the 36-point strategy 

TABLE 3.  Mean  parameter values for k12, kI3, and various 
mass estimates obtained from both the 36-point and 

the 6-point sampling schedule 

36-Point 
Schedule Parameter 

6-Point Coefficient of 
Schedule Variation 1 % )  

~ I Z  0.077 0.119 133 

M2min 18.3 15.8 38 
Mzint 26.8 22.6 39 
M,max 35.3 29.4 39 
Msint 81.6  80.4 14 
Mqmax 122.2 117.2 20 

k13 0.016 0.018 25 
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than for the  6-point strategy. As discussed in Methods, 
this is interpreted to mean that there is a significant devia- 
tion from the model due to biological variation as well as 
measurement error. 

Assuming that mean RE6 is an estimate of measure- 
ment error, then  the  measurement  error of plasma choles- 
terol specific activity has a coefficient of variation of 2.9%. 
The estimated error  due to biological variation is  3.1%, 
roughly comparable to  measurement error. The mean 
overall error  rate is 4.4%. None of the residual errors 
exceeded  10% in any of the 26 subjects studied. Approxi- 
mately  half the residual error appears to be due to  measure- 
ment  error  and half due  to biological error. 

DISCUSSION 

It is clearly inconvenient and  onerous  to  require a 
subject to return to the clinic 35  to 40 times during a 
10-month turnover study. In fact, such frequent visits 
dissuade many subjects from participating in  such  studies. 
In theory,  six parameters  can be estimated from six 
points, an observation that leads to a convenient sampling 
schedule. However,  several conditions must be met before 
one  can use such a simplified or convenient schedule. 
First, one  must be confident that  the three-pool model is a 
good description of the  data, since the convenient strategy 
does not permit exploration of alternative or more com- 
plex  models. After studying nearly 60 subjects, with a 
wide variety of plasma lipid values, in every one of whom 
a three-pool model was found to fit the data as well as a 
four-pool model and better than a two-pool model, we  now 
have confidence in the three-pool model as a generally 
valid description of whole body cholesterol turnover in 
humans. 

Secondly, there should not be serious biological error, 
that is, large systematic deviations from the model in the 
plasma specific activity data.  This  requirement arises 
because the 6-point strategy will not control for deviations 
from the model, i.e., for biological error. If one of the 
samples happens to be drawn during a major deviation 
from the model then  the  parameter estimates would  be 
seriously affected by the perturbation. Fortunately, com- 
parison of the residual errors, each expressed as a coeffi- 
cient of variation, from the two sampling strategies shows 
that biological variation is comparable in magnitude to 
measurement  error; both are roughly 3%. 

Thirdly, parameter estimates produced by the con- 
venient 6-point strategy should not deviate systematically 
from parameters estimated in the same patient  at the 
same time using the usual sampling strategy. Results 
presented in Tables 2 and 3 show that mean parameter 
estimates from the two strategies agree quite closely. 

Fourth, the  parameter estimates from the 6-point 
schedule should not vary significantly around those from 
the usual method. Again, the  data presented in Table 2 

show that  the accuracy of the  parameter estimates given 
by the 6-point strategy (as measured by the coefficients of 
variation) is quite high for PR, MI, M3min, and M,min. 
These are  the  parameters  that seem of particular physio- 
logical  relevance, and they are  parameters for which we 
have  developed predictive equations (2). The coefficients 
of variation for some of the  other  parameters (e.g., kI2, 
Table 3) are, however, substantial. 

Finally, in any given instance, one must be certain not 
only that a three-pool model will be an  adequate descrip- 
tion of the plasma cholesterol specific activity-time curve, 
but also that  the dynamics of the curve are not too dis- 
similar from our  prior experience. In  our studies of 
cholesterol turnover in abetalipoproteinemia (3), we had 
to use a more frequent sampling schedule, and  the sam- 
pling strategy will similarly have  to be validated in other 
unusual disorders and in patients who are being treated 
with plasma cholesterol-lowering drugs. 

While it may be possible to estimate six parameters 
with the  minimum  number of samples (5), from a practi- 
cal standpoint it is probably unwise to use only the  mini- 
mum  number of samples if it  is  feasible to obtain a slightly 
larger number (e.g., nine or ten samples). In any case, 
times at which samples are drawn are  quite critical for 
accurate  parameter estimation. There  are several ways  of 
choosing the optimal sampling times (5, 7), all of which 
depend on knowing the unknown parameter values,  i.e., 
the sampling times depend upon the  parameter values. 
The optimal times were computed for our previously 
studied subjects and  the first three were found to be quite 
close to days 1, 7, and 24 (or days 1, 8, and 28 for hyper- 
cholesterolemic subjects) but after that the times varied 
considerably. Hence, we have adopted the scheme de- 
scribed in Fig. 2 to select the times for  collecting the final 
three samples. 

There is a certain  amount of statistical literature  on 
optimal design of experiments with  some application to 
modeling of biological data (10,  11). While Landaw and 
DiStefano (11) present formulas for computing optimal 
sampling times, the effect  of subject-to-subject variability 
on optimal times was not discussed and has received 
surprisingly little attention. Also there has been little 
work on sequential design within one subject. 

Another factor to be considered is the criterion by 
which different optimal designs are compared. A number 
of criteria have been suggested (7), but the most  widely 
used  is the determinant or D-optimality criterion. In this 
criterion the  standard  errors of the  parameter estimates 
are minimized. We have  chosen  to minimize the coeffi- 
cients of variation of all six parameters, i.e., the estimated 
standard  error of the parameter estimate divided by the 
estimated value  itself. Times chosen in this way are sensi- 
tive to estimates of the slow rate constants (typically 0.005 
days") as well as the much faster (typically 0.02  days") 
rate constants. If sampling times were  chosen to minimize 
the average standard  errors of the parameter estimates 
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alone, then  the  standard  error of the larger estimates 
would predominate and times would be chosen  which 
would be optimal for the fast parameters but not the slow. 
Scaling the  standard  errors by the  parameter values 
means  that times will be chosen  which minimize the 
overall relative standard  error  and slow parameters will be 
estimated as accurately (in a relative  sense) as the fast 
parameters. 

We have used this convenient sampling schedule in 50 
studies of cholesterol turnover since 1980. The schedule 
has ‘simplified the study of cholesterol turnover inasmuch 
as patients need come to the clinic only 6 times for the 
drawing of blood samples rather  than 35 to 40 times as 
was the case in the past. This has saved considerable pro- 
fessional time per study  and has certainly made patients’ 
acceptance of the protocol much easier. Further, we are 
collaborating with other groups using this convenient 
strategy in  order to estimate cholesterol turnover in 
special study populations. The convenient sampling 
schedule now makes it feasible to study long-term choles- 
terol turnover in substantial numbers of subjects. 

The approach used in this study to develop the con- 
venient sampling schedule for  cholesterol turnover can be 
applied to other studies involving parameter estimation 
from kinetic data. The requirements  are  that  the model 
or mathematical equation be known,  e.g., a sum of three 
exponentials or a logistic curve, and  that there should be 
sufficient prior experience to permit estimation of the dis- 
tribution of parameters in the population. When these 
requirements are met, an optimal sampling schedule may 
be determined by conveniencelcompliance considerations 
as here, by the total amount of blood that may be drawn, 
or by other practical considerations. In  addition, if rapid 
analysis of early samples is  possible, a sequential design 
approach can be used for optimizing the  later sampling 
times for the individual subject under study. I(LI0 
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